Metamath Proof Explorer


Theorem eqabcbw

Description: Version of eqabcb using implicit substitution, which requires fewer axioms. (Contributed by TM, 24-Jan-2026)

Ref Expression
Hypothesis eqabbw.1
|- ( x = y -> ( ph <-> ps ) )
Assertion eqabcbw
|- ( { x | ph } = A <-> A. y ( ps <-> y e. A ) )

Proof

Step Hyp Ref Expression
1 eqabbw.1
 |-  ( x = y -> ( ph <-> ps ) )
2 1 eqabbw
 |-  ( A = { x | ph } <-> A. y ( y e. A <-> ps ) )
3 eqcom
 |-  ( { x | ph } = A <-> A = { x | ph } )
4 bicom
 |-  ( ( ps <-> y e. A ) <-> ( y e. A <-> ps ) )
5 4 albii
 |-  ( A. y ( ps <-> y e. A ) <-> A. y ( y e. A <-> ps ) )
6 2 3 5 3bitr4i
 |-  ( { x | ph } = A <-> A. y ( ps <-> y e. A ) )