Description: Version of eqabcb using implicit substitution, which requires fewer axioms. (Contributed by TM, 24-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqabbw.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| Assertion | eqabcbw | |- ( { x | ph } = A <-> A. y ( ps <-> y e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabbw.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | 1 | eqabbw | |- ( A = { x | ph } <-> A. y ( y e. A <-> ps ) ) |
| 3 | eqcom | |- ( { x | ph } = A <-> A = { x | ph } ) |
|
| 4 | bicom | |- ( ( ps <-> y e. A ) <-> ( y e. A <-> ps ) ) |
|
| 5 | 4 | albii | |- ( A. y ( ps <-> y e. A ) <-> A. y ( y e. A <-> ps ) ) |
| 6 | 2 3 5 | 3bitr4i | |- ( { x | ph } = A <-> A. y ( ps <-> y e. A ) ) |