Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994) (Proof shortened by Wolf Lammen, 16-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eqabcdv.1 | |- ( ph -> ( ps <-> x e. A ) ) |
|
Assertion | eqabcdv | |- ( ph -> { x | ps } = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqabcdv.1 | |- ( ph -> ( ps <-> x e. A ) ) |
|
2 | 1 | bicomd | |- ( ph -> ( x e. A <-> ps ) ) |
3 | 2 | eqabdv | |- ( ph -> A = { x | ps } ) |
4 | 3 | eqcomd | |- ( ph -> { x | ps } = A ) |