Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994) (Proof shortened by Wolf Lammen, 16-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqabcdv.1 | |- ( ph -> ( ps <-> x e. A ) ) |
|
| Assertion | eqabcdv | |- ( ph -> { x | ps } = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabcdv.1 | |- ( ph -> ( ps <-> x e. A ) ) |
|
| 2 | 1 | bicomd | |- ( ph -> ( x e. A <-> ps ) ) |
| 3 | 2 | eqabdv | |- ( ph -> A = { x | ps } ) |
| 4 | 3 | eqcomd | |- ( ph -> { x | ps } = A ) |