Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994) Avoid ax-11 . (Revised by Wolf Lammen, 6-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqabdv.1 | |- ( ph -> ( x e. A <-> ps ) ) |
|
| Assertion | eqabdv | |- ( ph -> A = { x | ps } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabdv.1 | |- ( ph -> ( x e. A <-> ps ) ) |
|
| 2 | 1 | sbbidv | |- ( ph -> ( [ y / x ] x e. A <-> [ y / x ] ps ) ) |
| 3 | clelsb1 | |- ( [ y / x ] x e. A <-> y e. A ) |
|
| 4 | 3 | bicomi | |- ( y e. A <-> [ y / x ] x e. A ) |
| 5 | df-clab | |- ( y e. { x | ps } <-> [ y / x ] ps ) |
|
| 6 | 2 4 5 | 3bitr4g | |- ( ph -> ( y e. A <-> y e. { x | ps } ) ) |
| 7 | 6 | eqrdv | |- ( ph -> A = { x | ps } ) |