Description: Equality of a class variable and a class abstraction (deduction form of eqabb ). (Contributed by NM, 16-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqabrd.1 | |- ( ph -> A = { x | ps } ) |
|
| Assertion | eqabrd | |- ( ph -> ( x e. A <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabrd.1 | |- ( ph -> A = { x | ps } ) |
|
| 2 | 1 | eleq2d | |- ( ph -> ( x e. A <-> x e. { x | ps } ) ) |
| 3 | abid | |- ( x e. { x | ps } <-> ps ) |
|
| 4 | 2 3 | bitrdi | |- ( ph -> ( x e. A <-> ps ) ) |