Metamath Proof Explorer


Theorem eqbrrdiv

Description: Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010)

Ref Expression
Hypotheses eqbrrdiv.1
|- Rel A
eqbrrdiv.2
|- Rel B
eqbrrdiv.3
|- ( ph -> ( x A y <-> x B y ) )
Assertion eqbrrdiv
|- ( ph -> A = B )

Proof

Step Hyp Ref Expression
1 eqbrrdiv.1
 |-  Rel A
2 eqbrrdiv.2
 |-  Rel B
3 eqbrrdiv.3
 |-  ( ph -> ( x A y <-> x B y ) )
4 df-br
 |-  ( x A y <-> <. x , y >. e. A )
5 df-br
 |-  ( x B y <-> <. x , y >. e. B )
6 3 4 5 3bitr3g
 |-  ( ph -> ( <. x , y >. e. A <-> <. x , y >. e. B ) )
7 1 2 6 eqrelrdv
 |-  ( ph -> A = B )