| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqbrrdva.1 |  |-  ( ph -> A C_ ( C X. D ) ) | 
						
							| 2 |  | eqbrrdva.2 |  |-  ( ph -> B C_ ( C X. D ) ) | 
						
							| 3 |  | eqbrrdva.3 |  |-  ( ( ph /\ x e. C /\ y e. D ) -> ( x A y <-> x B y ) ) | 
						
							| 4 |  | xpss |  |-  ( C X. D ) C_ ( _V X. _V ) | 
						
							| 5 | 1 4 | sstrdi |  |-  ( ph -> A C_ ( _V X. _V ) ) | 
						
							| 6 |  | df-rel |  |-  ( Rel A <-> A C_ ( _V X. _V ) ) | 
						
							| 7 | 5 6 | sylibr |  |-  ( ph -> Rel A ) | 
						
							| 8 | 2 4 | sstrdi |  |-  ( ph -> B C_ ( _V X. _V ) ) | 
						
							| 9 |  | df-rel |  |-  ( Rel B <-> B C_ ( _V X. _V ) ) | 
						
							| 10 | 8 9 | sylibr |  |-  ( ph -> Rel B ) | 
						
							| 11 | 1 | ssbrd |  |-  ( ph -> ( x A y -> x ( C X. D ) y ) ) | 
						
							| 12 |  | brxp |  |-  ( x ( C X. D ) y <-> ( x e. C /\ y e. D ) ) | 
						
							| 13 | 11 12 | imbitrdi |  |-  ( ph -> ( x A y -> ( x e. C /\ y e. D ) ) ) | 
						
							| 14 | 2 | ssbrd |  |-  ( ph -> ( x B y -> x ( C X. D ) y ) ) | 
						
							| 15 | 14 12 | imbitrdi |  |-  ( ph -> ( x B y -> ( x e. C /\ y e. D ) ) ) | 
						
							| 16 | 3 | 3expib |  |-  ( ph -> ( ( x e. C /\ y e. D ) -> ( x A y <-> x B y ) ) ) | 
						
							| 17 | 13 15 16 | pm5.21ndd |  |-  ( ph -> ( x A y <-> x B y ) ) | 
						
							| 18 | 7 10 17 | eqbrrdv |  |-  ( ph -> A = B ) |