Step |
Hyp |
Ref |
Expression |
1 |
|
eqbrrdva.1 |
|- ( ph -> A C_ ( C X. D ) ) |
2 |
|
eqbrrdva.2 |
|- ( ph -> B C_ ( C X. D ) ) |
3 |
|
eqbrrdva.3 |
|- ( ( ph /\ x e. C /\ y e. D ) -> ( x A y <-> x B y ) ) |
4 |
|
xpss |
|- ( C X. D ) C_ ( _V X. _V ) |
5 |
1 4
|
sstrdi |
|- ( ph -> A C_ ( _V X. _V ) ) |
6 |
|
df-rel |
|- ( Rel A <-> A C_ ( _V X. _V ) ) |
7 |
5 6
|
sylibr |
|- ( ph -> Rel A ) |
8 |
2 4
|
sstrdi |
|- ( ph -> B C_ ( _V X. _V ) ) |
9 |
|
df-rel |
|- ( Rel B <-> B C_ ( _V X. _V ) ) |
10 |
8 9
|
sylibr |
|- ( ph -> Rel B ) |
11 |
1
|
ssbrd |
|- ( ph -> ( x A y -> x ( C X. D ) y ) ) |
12 |
|
brxp |
|- ( x ( C X. D ) y <-> ( x e. C /\ y e. D ) ) |
13 |
11 12
|
syl6ib |
|- ( ph -> ( x A y -> ( x e. C /\ y e. D ) ) ) |
14 |
2
|
ssbrd |
|- ( ph -> ( x B y -> x ( C X. D ) y ) ) |
15 |
14 12
|
syl6ib |
|- ( ph -> ( x B y -> ( x e. C /\ y e. D ) ) ) |
16 |
3
|
3expib |
|- ( ph -> ( ( x e. C /\ y e. D ) -> ( x A y <-> x B y ) ) ) |
17 |
13 15 16
|
pm5.21ndd |
|- ( ph -> ( x A y <-> x B y ) ) |
18 |
7 10 17
|
eqbrrdv |
|- ( ph -> A = B ) |