Description: Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqbrriv.1 | |- Rel A |
|
| eqbrriv.2 | |- Rel B |
||
| eqbrriv.3 | |- ( x A y <-> x B y ) |
||
| Assertion | eqbrriv | |- A = B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrriv.1 | |- Rel A |
|
| 2 | eqbrriv.2 | |- Rel B |
|
| 3 | eqbrriv.3 | |- ( x A y <-> x B y ) |
|
| 4 | df-br | |- ( x A y <-> <. x , y >. e. A ) |
|
| 5 | df-br | |- ( x B y <-> <. x , y >. e. B ) |
|
| 6 | 3 4 5 | 3bitr3i | |- ( <. x , y >. e. A <-> <. x , y >. e. B ) |
| 7 | 1 2 6 | eqrelriiv | |- A = B |