Description: Substitution of equal classes into a binary relation. (Contributed by NM, 8-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqbrtrd.1 | |- ( ph -> A = B ) |
|
| eqbrtrd.2 | |- ( ph -> B R C ) |
||
| Assertion | eqbrtrd | |- ( ph -> A R C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrd.1 | |- ( ph -> A = B ) |
|
| 2 | eqbrtrd.2 | |- ( ph -> B R C ) |
|
| 3 | 1 | breq1d | |- ( ph -> ( A R C <-> B R C ) ) |
| 4 | 2 3 | mpbird | |- ( ph -> A R C ) |