Metamath Proof Explorer


Theorem eqbrtrdi

Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999)

Ref Expression
Hypotheses eqbrtrdi.1
|- ( ph -> A = B )
eqbrtrdi.2
|- B R C
Assertion eqbrtrdi
|- ( ph -> A R C )

Proof

Step Hyp Ref Expression
1 eqbrtrdi.1
 |-  ( ph -> A = B )
2 eqbrtrdi.2
 |-  B R C
3 1 breq1d
 |-  ( ph -> ( A R C <-> B R C ) )
4 2 3 mpbiri
 |-  ( ph -> A R C )