Metamath Proof Explorer


Theorem eqbrtri

Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999)

Ref Expression
Hypotheses eqbrtr.1
|- A = B
eqbrtr.2
|- B R C
Assertion eqbrtri
|- A R C

Proof

Step Hyp Ref Expression
1 eqbrtr.1
 |-  A = B
2 eqbrtr.2
 |-  B R C
3 1 breq1i
 |-  ( A R C <-> B R C )
4 2 3 mpbir
 |-  A R C