Metamath Proof Explorer


Theorem eqbrtrid

Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999)

Ref Expression
Hypotheses eqbrtrid.1
|- A = B
eqbrtrid.2
|- ( ph -> B R C )
Assertion eqbrtrid
|- ( ph -> A R C )

Proof

Step Hyp Ref Expression
1 eqbrtrid.1
 |-  A = B
2 eqbrtrid.2
 |-  ( ph -> B R C )
3 eqid
 |-  C = C
4 2 1 3 3brtr4g
 |-  ( ph -> A R C )