Metamath Proof Explorer


Theorem eqbrtrrdi

Description: A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eqbrtrrdi.1
|- ( ph -> B = A )
eqbrtrrdi.2
|- B R C
Assertion eqbrtrrdi
|- ( ph -> A R C )

Proof

Step Hyp Ref Expression
1 eqbrtrrdi.1
 |-  ( ph -> B = A )
2 eqbrtrrdi.2
 |-  B R C
3 1 eqcomd
 |-  ( ph -> A = B )
4 3 2 eqbrtrdi
 |-  ( ph -> A R C )