| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqcoe1ply1eq.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | eqcoe1ply1eq.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | eqcoe1ply1eq.a |  |-  A = ( coe1 ` K ) | 
						
							| 4 |  | eqcoe1ply1eq.c |  |-  C = ( coe1 ` L ) | 
						
							| 5 |  | fveq2 |  |-  ( k = n -> ( A ` k ) = ( A ` n ) ) | 
						
							| 6 |  | fveq2 |  |-  ( k = n -> ( C ` k ) = ( C ` n ) ) | 
						
							| 7 | 5 6 | eqeq12d |  |-  ( k = n -> ( ( A ` k ) = ( C ` k ) <-> ( A ` n ) = ( C ` n ) ) ) | 
						
							| 8 | 7 | rspccv |  |-  ( A. k e. NN0 ( A ` k ) = ( C ` k ) -> ( n e. NN0 -> ( A ` n ) = ( C ` n ) ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ A. k e. NN0 ( A ` k ) = ( C ` k ) ) -> ( n e. NN0 -> ( A ` n ) = ( C ` n ) ) ) | 
						
							| 10 | 9 | imp |  |-  ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ A. k e. NN0 ( A ` k ) = ( C ` k ) ) /\ n e. NN0 ) -> ( A ` n ) = ( C ` n ) ) | 
						
							| 11 | 3 | fveq1i |  |-  ( A ` n ) = ( ( coe1 ` K ) ` n ) | 
						
							| 12 | 4 | fveq1i |  |-  ( C ` n ) = ( ( coe1 ` L ) ` n ) | 
						
							| 13 | 10 11 12 | 3eqtr3g |  |-  ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ A. k e. NN0 ( A ` k ) = ( C ` k ) ) /\ n e. NN0 ) -> ( ( coe1 ` K ) ` n ) = ( ( coe1 ` L ) ` n ) ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ A. k e. NN0 ( A ` k ) = ( C ` k ) ) /\ n e. NN0 ) -> ( ( ( coe1 ` K ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( ( ( coe1 ` L ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) | 
						
							| 15 | 14 | mpteq2dva |  |-  ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ A. k e. NN0 ( A ` k ) = ( C ` k ) ) -> ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) = ( n e. NN0 |-> ( ( ( coe1 ` L ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) | 
						
							| 16 | 15 | oveq2d |  |-  ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ A. k e. NN0 ( A ` k ) = ( C ` k ) ) -> ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) = ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` L ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) | 
						
							| 17 |  | eqid |  |-  ( var1 ` R ) = ( var1 ` R ) | 
						
							| 18 |  | eqid |  |-  ( .s ` P ) = ( .s ` P ) | 
						
							| 19 |  | eqid |  |-  ( mulGrp ` P ) = ( mulGrp ` P ) | 
						
							| 20 |  | eqid |  |-  ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) | 
						
							| 21 |  | eqid |  |-  ( coe1 ` K ) = ( coe1 ` K ) | 
						
							| 22 | 1 17 2 18 19 20 21 | ply1coe |  |-  ( ( R e. Ring /\ K e. B ) -> K = ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) | 
						
							| 23 | 22 | 3adant3 |  |-  ( ( R e. Ring /\ K e. B /\ L e. B ) -> K = ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) | 
						
							| 24 |  | eqid |  |-  ( coe1 ` L ) = ( coe1 ` L ) | 
						
							| 25 | 1 17 2 18 19 20 24 | ply1coe |  |-  ( ( R e. Ring /\ L e. B ) -> L = ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` L ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) | 
						
							| 26 | 25 | 3adant2 |  |-  ( ( R e. Ring /\ K e. B /\ L e. B ) -> L = ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` L ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) | 
						
							| 27 | 23 26 | eqeq12d |  |-  ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( K = L <-> ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) = ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` L ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ A. k e. NN0 ( A ` k ) = ( C ` k ) ) -> ( K = L <-> ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) = ( P gsum ( n e. NN0 |-> ( ( ( coe1 ` L ) ` n ) ( .s ` P ) ( n ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) ) | 
						
							| 29 | 16 28 | mpbird |  |-  ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ A. k e. NN0 ( A ` k ) = ( C ` k ) ) -> K = L ) | 
						
							| 30 | 29 | ex |  |-  ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( A. k e. NN0 ( A ` k ) = ( C ` k ) -> K = L ) ) |