Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqelssd.1 | |- ( ph -> A C_ B ) |
|
| eqelssd.2 | |- ( ( ph /\ x e. B ) -> x e. A ) |
||
| Assertion | eqelssd | |- ( ph -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqelssd.1 | |- ( ph -> A C_ B ) |
|
| 2 | eqelssd.2 | |- ( ( ph /\ x e. B ) -> x e. A ) |
|
| 3 | 2 | ex | |- ( ph -> ( x e. B -> x e. A ) ) |
| 4 | 3 | ssrdv | |- ( ph -> B C_ A ) |
| 5 | 1 4 | eqssd | |- ( ph -> A = B ) |