Description: Substitution of equal classes into membership relation, deduction form. (Contributed by Raph Levien, 10-Dec-2002)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqeltrd.1 | |- ( ph -> A = B ) |
|
eqeltrd.2 | |- ( ph -> B e. C ) |
||
Assertion | eqeltrd | |- ( ph -> A e. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrd.1 | |- ( ph -> A = B ) |
|
2 | eqeltrd.2 | |- ( ph -> B e. C ) |
|
3 | 1 | eleq1d | |- ( ph -> ( A e. C <-> B e. C ) ) |
4 | 2 3 | mpbird | |- ( ph -> A e. C ) |