Description: Substitution of equal classes into membership relation, deduction form. (Contributed by Raph Levien, 10-Dec-2002)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqeltrd.1 | |- ( ph -> A = B ) |
|
| eqeltrd.2 | |- ( ph -> B e. C ) |
||
| Assertion | eqeltrd | |- ( ph -> A e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrd.1 | |- ( ph -> A = B ) |
|
| 2 | eqeltrd.2 | |- ( ph -> B e. C ) |
|
| 3 | 1 | eleq1d | |- ( ph -> ( A e. C <-> B e. C ) ) |
| 4 | 2 3 | mpbird | |- ( ph -> A e. C ) |