Metamath Proof Explorer


Theorem eqeltrd

Description: Substitution of equal classes into membership relation, deduction form. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Hypotheses eqeltrd.1
|- ( ph -> A = B )
eqeltrd.2
|- ( ph -> B e. C )
Assertion eqeltrd
|- ( ph -> A e. C )

Proof

Step Hyp Ref Expression
1 eqeltrd.1
 |-  ( ph -> A = B )
2 eqeltrd.2
 |-  ( ph -> B e. C )
3 1 eleq1d
 |-  ( ph -> ( A e. C <-> B e. C ) )
4 2 3 mpbird
 |-  ( ph -> A e. C )