Metamath Proof Explorer


Theorem eqeltrdi

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eqeltrdi.1
|- ( ph -> A = B )
eqeltrdi.2
|- B e. C
Assertion eqeltrdi
|- ( ph -> A e. C )

Proof

Step Hyp Ref Expression
1 eqeltrdi.1
 |-  ( ph -> A = B )
2 eqeltrdi.2
 |-  B e. C
3 2 a1i
 |-  ( ph -> B e. C )
4 1 3 eqeltrd
 |-  ( ph -> A e. C )