Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqeltrdi.1 | |- ( ph -> A = B ) |
|
| eqeltrdi.2 | |- B e. C |
||
| Assertion | eqeltrdi | |- ( ph -> A e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrdi.1 | |- ( ph -> A = B ) |
|
| 2 | eqeltrdi.2 | |- B e. C |
|
| 3 | 2 | a1i | |- ( ph -> B e. C ) |
| 4 | 1 3 | eqeltrd | |- ( ph -> A e. C ) |