Metamath Proof Explorer


Theorem eqeltrid

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eqeltrid.1
|- A = B
eqeltrid.2
|- ( ph -> B e. C )
Assertion eqeltrid
|- ( ph -> A e. C )

Proof

Step Hyp Ref Expression
1 eqeltrid.1
 |-  A = B
2 eqeltrid.2
 |-  ( ph -> B e. C )
3 1 a1i
 |-  ( ph -> A = B )
4 3 2 eqeltrd
 |-  ( ph -> A e. C )