Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqeltrrid.1 | |- B = A |
|
| eqeltrrid.2 | |- ( ph -> B e. C ) |
||
| Assertion | eqeltrrid | |- ( ph -> A e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrid.1 | |- B = A |
|
| 2 | eqeltrrid.2 | |- ( ph -> B e. C ) |
|
| 3 | 1 | eqcomi | |- A = B |
| 4 | 3 2 | eqeltrid | |- ( ph -> A e. C ) |