Step |
Hyp |
Ref |
Expression |
1 |
|
eqer.1 |
|- ( x = y -> A = B ) |
2 |
|
eqer.2 |
|- R = { <. x , y >. | A = B } |
3 |
2
|
relopabiv |
|- Rel R |
4 |
|
id |
|- ( [_ z / x ]_ A = [_ w / x ]_ A -> [_ z / x ]_ A = [_ w / x ]_ A ) |
5 |
4
|
eqcomd |
|- ( [_ z / x ]_ A = [_ w / x ]_ A -> [_ w / x ]_ A = [_ z / x ]_ A ) |
6 |
1 2
|
eqerlem |
|- ( z R w <-> [_ z / x ]_ A = [_ w / x ]_ A ) |
7 |
1 2
|
eqerlem |
|- ( w R z <-> [_ w / x ]_ A = [_ z / x ]_ A ) |
8 |
5 6 7
|
3imtr4i |
|- ( z R w -> w R z ) |
9 |
|
eqtr |
|- ( ( [_ z / x ]_ A = [_ w / x ]_ A /\ [_ w / x ]_ A = [_ v / x ]_ A ) -> [_ z / x ]_ A = [_ v / x ]_ A ) |
10 |
1 2
|
eqerlem |
|- ( w R v <-> [_ w / x ]_ A = [_ v / x ]_ A ) |
11 |
6 10
|
anbi12i |
|- ( ( z R w /\ w R v ) <-> ( [_ z / x ]_ A = [_ w / x ]_ A /\ [_ w / x ]_ A = [_ v / x ]_ A ) ) |
12 |
1 2
|
eqerlem |
|- ( z R v <-> [_ z / x ]_ A = [_ v / x ]_ A ) |
13 |
9 11 12
|
3imtr4i |
|- ( ( z R w /\ w R v ) -> z R v ) |
14 |
|
vex |
|- z e. _V |
15 |
|
eqid |
|- [_ z / x ]_ A = [_ z / x ]_ A |
16 |
1 2
|
eqerlem |
|- ( z R z <-> [_ z / x ]_ A = [_ z / x ]_ A ) |
17 |
15 16
|
mpbir |
|- z R z |
18 |
14 17
|
2th |
|- ( z e. _V <-> z R z ) |
19 |
3 8 13 18
|
iseri |
|- R Er _V |