Step |
Hyp |
Ref |
Expression |
1 |
|
eqeu.1 |
|- ( x = A -> ( ph <-> ps ) ) |
2 |
1
|
spcegv |
|- ( A e. B -> ( ps -> E. x ph ) ) |
3 |
2
|
imp |
|- ( ( A e. B /\ ps ) -> E. x ph ) |
4 |
3
|
3adant3 |
|- ( ( A e. B /\ ps /\ A. x ( ph -> x = A ) ) -> E. x ph ) |
5 |
|
eqeq2 |
|- ( y = A -> ( x = y <-> x = A ) ) |
6 |
5
|
imbi2d |
|- ( y = A -> ( ( ph -> x = y ) <-> ( ph -> x = A ) ) ) |
7 |
6
|
albidv |
|- ( y = A -> ( A. x ( ph -> x = y ) <-> A. x ( ph -> x = A ) ) ) |
8 |
7
|
spcegv |
|- ( A e. B -> ( A. x ( ph -> x = A ) -> E. y A. x ( ph -> x = y ) ) ) |
9 |
8
|
imp |
|- ( ( A e. B /\ A. x ( ph -> x = A ) ) -> E. y A. x ( ph -> x = y ) ) |
10 |
9
|
3adant2 |
|- ( ( A e. B /\ ps /\ A. x ( ph -> x = A ) ) -> E. y A. x ( ph -> x = y ) ) |
11 |
|
eu3v |
|- ( E! x ph <-> ( E. x ph /\ E. y A. x ( ph -> x = y ) ) ) |
12 |
4 10 11
|
sylanbrc |
|- ( ( A e. B /\ ps /\ A. x ( ph -> x = A ) ) -> E! x ph ) |