Metamath Proof Explorer


Theorem eqeuel

Description: A condition which implies the existence of a unique element of a class. (Contributed by AV, 4-Jan-2022)

Ref Expression
Assertion eqeuel
|- ( ( A =/= (/) /\ A. x A. y ( ( x e. A /\ y e. A ) -> x = y ) ) -> E! x x e. A )

Proof

Step Hyp Ref Expression
1 n0
 |-  ( A =/= (/) <-> E. x x e. A )
2 1 biimpi
 |-  ( A =/= (/) -> E. x x e. A )
3 2 anim1i
 |-  ( ( A =/= (/) /\ A. x A. y ( ( x e. A /\ y e. A ) -> x = y ) ) -> ( E. x x e. A /\ A. x A. y ( ( x e. A /\ y e. A ) -> x = y ) ) )
4 eleq1w
 |-  ( x = y -> ( x e. A <-> y e. A ) )
5 4 eu4
 |-  ( E! x x e. A <-> ( E. x x e. A /\ A. x A. y ( ( x e. A /\ y e. A ) -> x = y ) ) )
6 3 5 sylibr
 |-  ( ( A =/= (/) /\ A. x A. y ( ( x e. A /\ y e. A ) -> x = y ) ) -> E! x x e. A )