Description: A condition which implies the existence of a unique element of a class. (Contributed by AV, 4-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | eqeuel | |- ( ( A =/= (/) /\ A. x A. y ( ( x e. A /\ y e. A ) -> x = y ) ) -> E! x x e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 | |- ( A =/= (/) <-> E. x x e. A ) |
|
2 | 1 | biimpi | |- ( A =/= (/) -> E. x x e. A ) |
3 | 2 | anim1i | |- ( ( A =/= (/) /\ A. x A. y ( ( x e. A /\ y e. A ) -> x = y ) ) -> ( E. x x e. A /\ A. x A. y ( ( x e. A /\ y e. A ) -> x = y ) ) ) |
4 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
5 | 4 | eu4 | |- ( E! x x e. A <-> ( E. x x e. A /\ A. x A. y ( ( x e. A /\ y e. A ) -> x = y ) ) ) |
6 | 3 5 | sylibr | |- ( ( A =/= (/) /\ A. x A. y ( ( x e. A /\ y e. A ) -> x = y ) ) -> E! x x e. A ) |