| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dffn5 |
|- ( F Fn A <-> F = ( x e. A |-> ( F ` x ) ) ) |
| 2 |
|
dffn5 |
|- ( G Fn A <-> G = ( x e. A |-> ( G ` x ) ) ) |
| 3 |
|
eqeq12 |
|- ( ( F = ( x e. A |-> ( F ` x ) ) /\ G = ( x e. A |-> ( G ` x ) ) ) -> ( F = G <-> ( x e. A |-> ( F ` x ) ) = ( x e. A |-> ( G ` x ) ) ) ) |
| 4 |
1 2 3
|
syl2anb |
|- ( ( F Fn A /\ G Fn A ) -> ( F = G <-> ( x e. A |-> ( F ` x ) ) = ( x e. A |-> ( G ` x ) ) ) ) |
| 5 |
|
fvex |
|- ( F ` x ) e. _V |
| 6 |
5
|
rgenw |
|- A. x e. A ( F ` x ) e. _V |
| 7 |
|
mpteqb |
|- ( A. x e. A ( F ` x ) e. _V -> ( ( x e. A |-> ( F ` x ) ) = ( x e. A |-> ( G ` x ) ) <-> A. x e. A ( F ` x ) = ( G ` x ) ) ) |
| 8 |
6 7
|
ax-mp |
|- ( ( x e. A |-> ( F ` x ) ) = ( x e. A |-> ( G ` x ) ) <-> A. x e. A ( F ` x ) = ( G ` x ) ) |
| 9 |
4 8
|
bitrdi |
|- ( ( F Fn A /\ G Fn A ) -> ( F = G <-> A. x e. A ( F ` x ) = ( G ` x ) ) ) |