| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqfnfv2f.1 |
|- F/_ x F |
| 2 |
|
eqfnfv2f.2 |
|- F/_ x G |
| 3 |
|
eqfnfv |
|- ( ( F Fn A /\ G Fn A ) -> ( F = G <-> A. z e. A ( F ` z ) = ( G ` z ) ) ) |
| 4 |
|
nfcv |
|- F/_ x z |
| 5 |
1 4
|
nffv |
|- F/_ x ( F ` z ) |
| 6 |
2 4
|
nffv |
|- F/_ x ( G ` z ) |
| 7 |
5 6
|
nfeq |
|- F/ x ( F ` z ) = ( G ` z ) |
| 8 |
|
nfv |
|- F/ z ( F ` x ) = ( G ` x ) |
| 9 |
|
fveq2 |
|- ( z = x -> ( F ` z ) = ( F ` x ) ) |
| 10 |
|
fveq2 |
|- ( z = x -> ( G ` z ) = ( G ` x ) ) |
| 11 |
9 10
|
eqeq12d |
|- ( z = x -> ( ( F ` z ) = ( G ` z ) <-> ( F ` x ) = ( G ` x ) ) ) |
| 12 |
7 8 11
|
cbvralw |
|- ( A. z e. A ( F ` z ) = ( G ` z ) <-> A. x e. A ( F ` x ) = ( G ` x ) ) |
| 13 |
3 12
|
bitrdi |
|- ( ( F Fn A /\ G Fn A ) -> ( F = G <-> A. x e. A ( F ` x ) = ( G ` x ) ) ) |