Step |
Hyp |
Ref |
Expression |
1 |
|
eqfnfv2 |
|- ( ( F Fn A /\ G Fn B ) -> ( F = G <-> ( A = B /\ A. x e. A ( F ` x ) = ( G ` x ) ) ) ) |
2 |
|
eqss |
|- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
3 |
2
|
biancomi |
|- ( A = B <-> ( B C_ A /\ A C_ B ) ) |
4 |
3
|
anbi1i |
|- ( ( A = B /\ A. x e. A ( F ` x ) = ( G ` x ) ) <-> ( ( B C_ A /\ A C_ B ) /\ A. x e. A ( F ` x ) = ( G ` x ) ) ) |
5 |
|
anass |
|- ( ( ( B C_ A /\ A C_ B ) /\ A. x e. A ( F ` x ) = ( G ` x ) ) <-> ( B C_ A /\ ( A C_ B /\ A. x e. A ( F ` x ) = ( G ` x ) ) ) ) |
6 |
|
dfss3 |
|- ( A C_ B <-> A. x e. A x e. B ) |
7 |
6
|
anbi1i |
|- ( ( A C_ B /\ A. x e. A ( F ` x ) = ( G ` x ) ) <-> ( A. x e. A x e. B /\ A. x e. A ( F ` x ) = ( G ` x ) ) ) |
8 |
|
r19.26 |
|- ( A. x e. A ( x e. B /\ ( F ` x ) = ( G ` x ) ) <-> ( A. x e. A x e. B /\ A. x e. A ( F ` x ) = ( G ` x ) ) ) |
9 |
7 8
|
bitr4i |
|- ( ( A C_ B /\ A. x e. A ( F ` x ) = ( G ` x ) ) <-> A. x e. A ( x e. B /\ ( F ` x ) = ( G ` x ) ) ) |
10 |
9
|
anbi2i |
|- ( ( B C_ A /\ ( A C_ B /\ A. x e. A ( F ` x ) = ( G ` x ) ) ) <-> ( B C_ A /\ A. x e. A ( x e. B /\ ( F ` x ) = ( G ` x ) ) ) ) |
11 |
4 5 10
|
3bitri |
|- ( ( A = B /\ A. x e. A ( F ` x ) = ( G ` x ) ) <-> ( B C_ A /\ A. x e. A ( x e. B /\ ( F ` x ) = ( G ` x ) ) ) ) |
12 |
1 11
|
bitrdi |
|- ( ( F Fn A /\ G Fn B ) -> ( F = G <-> ( B C_ A /\ A. x e. A ( x e. B /\ ( F ` x ) = ( G ` x ) ) ) ) ) |