Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqfnfvd.1 | |- ( ph -> F Fn A ) |
|
| eqfnfvd.2 | |- ( ph -> G Fn A ) |
||
| eqfnfvd.3 | |- ( ( ph /\ x e. A ) -> ( F ` x ) = ( G ` x ) ) |
||
| Assertion | eqfnfvd | |- ( ph -> F = G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqfnfvd.1 | |- ( ph -> F Fn A ) |
|
| 2 | eqfnfvd.2 | |- ( ph -> G Fn A ) |
|
| 3 | eqfnfvd.3 | |- ( ( ph /\ x e. A ) -> ( F ` x ) = ( G ` x ) ) |
|
| 4 | 3 | ralrimiva | |- ( ph -> A. x e. A ( F ` x ) = ( G ` x ) ) |
| 5 | eqfnfv | |- ( ( F Fn A /\ G Fn A ) -> ( F = G <-> A. x e. A ( F ` x ) = ( G ` x ) ) ) |
|
| 6 | 1 2 5 | syl2anc | |- ( ph -> ( F = G <-> A. x e. A ( F ` x ) = ( G ` x ) ) ) |
| 7 | 4 6 | mpbird | |- ( ph -> F = G ) |