Step |
Hyp |
Ref |
Expression |
1 |
|
eqfnfv2 |
|- ( ( F Fn ( A X. B ) /\ G Fn ( C X. D ) ) -> ( F = G <-> ( ( A X. B ) = ( C X. D ) /\ A. z e. ( A X. B ) ( F ` z ) = ( G ` z ) ) ) ) |
2 |
|
fveq2 |
|- ( z = <. x , y >. -> ( F ` z ) = ( F ` <. x , y >. ) ) |
3 |
|
fveq2 |
|- ( z = <. x , y >. -> ( G ` z ) = ( G ` <. x , y >. ) ) |
4 |
2 3
|
eqeq12d |
|- ( z = <. x , y >. -> ( ( F ` z ) = ( G ` z ) <-> ( F ` <. x , y >. ) = ( G ` <. x , y >. ) ) ) |
5 |
|
df-ov |
|- ( x F y ) = ( F ` <. x , y >. ) |
6 |
|
df-ov |
|- ( x G y ) = ( G ` <. x , y >. ) |
7 |
5 6
|
eqeq12i |
|- ( ( x F y ) = ( x G y ) <-> ( F ` <. x , y >. ) = ( G ` <. x , y >. ) ) |
8 |
4 7
|
bitr4di |
|- ( z = <. x , y >. -> ( ( F ` z ) = ( G ` z ) <-> ( x F y ) = ( x G y ) ) ) |
9 |
8
|
ralxp |
|- ( A. z e. ( A X. B ) ( F ` z ) = ( G ` z ) <-> A. x e. A A. y e. B ( x F y ) = ( x G y ) ) |
10 |
9
|
anbi2i |
|- ( ( ( A X. B ) = ( C X. D ) /\ A. z e. ( A X. B ) ( F ` z ) = ( G ` z ) ) <-> ( ( A X. B ) = ( C X. D ) /\ A. x e. A A. y e. B ( x F y ) = ( x G y ) ) ) |
11 |
1 10
|
bitrdi |
|- ( ( F Fn ( A X. B ) /\ G Fn ( C X. D ) ) -> ( F = G <-> ( ( A X. B ) = ( C X. D ) /\ A. x e. A A. y e. B ( x F y ) = ( x G y ) ) ) ) |