| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reseq1 |
|- ( F = G -> ( F |` A ) = ( G |` A ) ) |
| 2 |
|
reseq1 |
|- ( F = G -> ( F |` B ) = ( G |` B ) ) |
| 3 |
1 2
|
jca |
|- ( F = G -> ( ( F |` A ) = ( G |` A ) /\ ( F |` B ) = ( G |` B ) ) ) |
| 4 |
|
elun |
|- ( x e. ( A u. B ) <-> ( x e. A \/ x e. B ) ) |
| 5 |
|
fveq1 |
|- ( ( F |` A ) = ( G |` A ) -> ( ( F |` A ) ` x ) = ( ( G |` A ) ` x ) ) |
| 6 |
|
fvres |
|- ( x e. A -> ( ( F |` A ) ` x ) = ( F ` x ) ) |
| 7 |
5 6
|
sylan9req |
|- ( ( ( F |` A ) = ( G |` A ) /\ x e. A ) -> ( ( G |` A ) ` x ) = ( F ` x ) ) |
| 8 |
|
fvres |
|- ( x e. A -> ( ( G |` A ) ` x ) = ( G ` x ) ) |
| 9 |
8
|
adantl |
|- ( ( ( F |` A ) = ( G |` A ) /\ x e. A ) -> ( ( G |` A ) ` x ) = ( G ` x ) ) |
| 10 |
7 9
|
eqtr3d |
|- ( ( ( F |` A ) = ( G |` A ) /\ x e. A ) -> ( F ` x ) = ( G ` x ) ) |
| 11 |
10
|
adantlr |
|- ( ( ( ( F |` A ) = ( G |` A ) /\ ( F |` B ) = ( G |` B ) ) /\ x e. A ) -> ( F ` x ) = ( G ` x ) ) |
| 12 |
|
fveq1 |
|- ( ( F |` B ) = ( G |` B ) -> ( ( F |` B ) ` x ) = ( ( G |` B ) ` x ) ) |
| 13 |
|
fvres |
|- ( x e. B -> ( ( F |` B ) ` x ) = ( F ` x ) ) |
| 14 |
12 13
|
sylan9req |
|- ( ( ( F |` B ) = ( G |` B ) /\ x e. B ) -> ( ( G |` B ) ` x ) = ( F ` x ) ) |
| 15 |
|
fvres |
|- ( x e. B -> ( ( G |` B ) ` x ) = ( G ` x ) ) |
| 16 |
15
|
adantl |
|- ( ( ( F |` B ) = ( G |` B ) /\ x e. B ) -> ( ( G |` B ) ` x ) = ( G ` x ) ) |
| 17 |
14 16
|
eqtr3d |
|- ( ( ( F |` B ) = ( G |` B ) /\ x e. B ) -> ( F ` x ) = ( G ` x ) ) |
| 18 |
17
|
adantll |
|- ( ( ( ( F |` A ) = ( G |` A ) /\ ( F |` B ) = ( G |` B ) ) /\ x e. B ) -> ( F ` x ) = ( G ` x ) ) |
| 19 |
11 18
|
jaodan |
|- ( ( ( ( F |` A ) = ( G |` A ) /\ ( F |` B ) = ( G |` B ) ) /\ ( x e. A \/ x e. B ) ) -> ( F ` x ) = ( G ` x ) ) |
| 20 |
4 19
|
sylan2b |
|- ( ( ( ( F |` A ) = ( G |` A ) /\ ( F |` B ) = ( G |` B ) ) /\ x e. ( A u. B ) ) -> ( F ` x ) = ( G ` x ) ) |
| 21 |
20
|
ralrimiva |
|- ( ( ( F |` A ) = ( G |` A ) /\ ( F |` B ) = ( G |` B ) ) -> A. x e. ( A u. B ) ( F ` x ) = ( G ` x ) ) |
| 22 |
|
eqfnfv |
|- ( ( F Fn ( A u. B ) /\ G Fn ( A u. B ) ) -> ( F = G <-> A. x e. ( A u. B ) ( F ` x ) = ( G ` x ) ) ) |
| 23 |
21 22
|
imbitrrid |
|- ( ( F Fn ( A u. B ) /\ G Fn ( A u. B ) ) -> ( ( ( F |` A ) = ( G |` A ) /\ ( F |` B ) = ( G |` B ) ) -> F = G ) ) |
| 24 |
3 23
|
impbid2 |
|- ( ( F Fn ( A u. B ) /\ G Fn ( A u. B ) ) -> ( F = G <-> ( ( F |` A ) = ( G |` A ) /\ ( F |` B ) = ( G |` B ) ) ) ) |