Metamath Proof Explorer


Theorem eqfunfv

Description: Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011)

Ref Expression
Assertion eqfunfv
|- ( ( Fun F /\ Fun G ) -> ( F = G <-> ( dom F = dom G /\ A. x e. dom F ( F ` x ) = ( G ` x ) ) ) )

Proof

Step Hyp Ref Expression
1 funfn
 |-  ( Fun F <-> F Fn dom F )
2 funfn
 |-  ( Fun G <-> G Fn dom G )
3 eqfnfv2
 |-  ( ( F Fn dom F /\ G Fn dom G ) -> ( F = G <-> ( dom F = dom G /\ A. x e. dom F ( F ` x ) = ( G ` x ) ) ) )
4 1 2 3 syl2anb
 |-  ( ( Fun F /\ Fun G ) -> ( F = G <-> ( dom F = dom G /\ A. x e. dom F ( F ` x ) = ( G ` x ) ) ) )