Description: Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | eqfunfv | |- ( ( Fun F /\ Fun G ) -> ( F = G <-> ( dom F = dom G /\ A. x e. dom F ( F ` x ) = ( G ` x ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn | |- ( Fun F <-> F Fn dom F ) |
|
2 | funfn | |- ( Fun G <-> G Fn dom G ) |
|
3 | eqfnfv2 | |- ( ( F Fn dom F /\ G Fn dom G ) -> ( F = G <-> ( dom F = dom G /\ A. x e. dom F ( F ` x ) = ( G ` x ) ) ) ) |
|
4 | 1 2 3 | syl2anb | |- ( ( Fun F /\ Fun G ) -> ( F = G <-> ( dom F = dom G /\ A. x e. dom F ( F ` x ) = ( G ` x ) ) ) ) |