| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqg0el.1 |  |-  .~ = ( G ~QG H ) | 
						
							| 2 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 3 | 2 1 | eqger |  |-  ( H e. ( SubGrp ` G ) -> .~ Er ( Base ` G ) ) | 
						
							| 4 | 3 | adantl |  |-  ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> .~ Er ( Base ` G ) ) | 
						
							| 5 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 6 | 2 5 | grpidcl |  |-  ( G e. Grp -> ( 0g ` G ) e. ( Base ` G ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( 0g ` G ) e. ( Base ` G ) ) | 
						
							| 8 | 4 7 | erth |  |-  ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( ( 0g ` G ) .~ X <-> [ ( 0g ` G ) ] .~ = [ X ] .~ ) ) | 
						
							| 9 | 2 1 5 | eqgid |  |-  ( H e. ( SubGrp ` G ) -> [ ( 0g ` G ) ] .~ = H ) | 
						
							| 10 | 9 | adantl |  |-  ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> [ ( 0g ` G ) ] .~ = H ) | 
						
							| 11 | 10 | eqeq1d |  |-  ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( [ ( 0g ` G ) ] .~ = [ X ] .~ <-> H = [ X ] .~ ) ) | 
						
							| 12 |  | eqcom |  |-  ( H = [ X ] .~ <-> [ X ] .~ = H ) | 
						
							| 13 | 12 | a1i |  |-  ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( H = [ X ] .~ <-> [ X ] .~ = H ) ) | 
						
							| 14 | 8 11 13 | 3bitrrd |  |-  ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( [ X ] .~ = H <-> ( 0g ` G ) .~ X ) ) | 
						
							| 15 |  | errel |  |-  ( .~ Er ( Base ` G ) -> Rel .~ ) | 
						
							| 16 |  | relelec |  |-  ( Rel .~ -> ( X e. [ ( 0g ` G ) ] .~ <-> ( 0g ` G ) .~ X ) ) | 
						
							| 17 | 3 15 16 | 3syl |  |-  ( H e. ( SubGrp ` G ) -> ( X e. [ ( 0g ` G ) ] .~ <-> ( 0g ` G ) .~ X ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( X e. [ ( 0g ` G ) ] .~ <-> ( 0g ` G ) .~ X ) ) | 
						
							| 19 | 10 | eleq2d |  |-  ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( X e. [ ( 0g ` G ) ] .~ <-> X e. H ) ) | 
						
							| 20 | 14 18 19 | 3bitr2d |  |-  ( ( G e. Grp /\ H e. ( SubGrp ` G ) ) -> ( [ X ] .~ = H <-> X e. H ) ) |