| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqg0subg.0 |  |-  .0. = ( 0g ` G ) | 
						
							| 2 |  | eqg0subg.s |  |-  S = { .0. } | 
						
							| 3 |  | eqg0subg.b |  |-  B = ( Base ` G ) | 
						
							| 4 |  | eqg0subg.r |  |-  R = ( G ~QG S ) | 
						
							| 5 | 1 | 0subg |  |-  ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) | 
						
							| 6 | 3 | subgss |  |-  ( { .0. } e. ( SubGrp ` G ) -> { .0. } C_ B ) | 
						
							| 7 | 5 6 | syl |  |-  ( G e. Grp -> { .0. } C_ B ) | 
						
							| 8 | 2 7 | eqsstrid |  |-  ( G e. Grp -> S C_ B ) | 
						
							| 9 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 10 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 11 | 3 9 10 4 | eqgfval |  |-  ( ( G e. Grp /\ S C_ B ) -> R = { <. x , y >. | ( { x , y } C_ B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) } ) | 
						
							| 12 | 8 11 | mpdan |  |-  ( G e. Grp -> R = { <. x , y >. | ( { x , y } C_ B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) } ) | 
						
							| 13 |  | opabresid |  |-  ( _I |` B ) = { <. x , y >. | ( x e. B /\ y = x ) } | 
						
							| 14 |  | simpl |  |-  ( ( x e. B /\ y = x ) -> x e. B ) | 
						
							| 15 |  | eleq1w |  |-  ( x = y -> ( x e. B <-> y e. B ) ) | 
						
							| 16 | 15 | equcoms |  |-  ( y = x -> ( x e. B <-> y e. B ) ) | 
						
							| 17 | 16 | biimpac |  |-  ( ( x e. B /\ y = x ) -> y e. B ) | 
						
							| 18 |  | simpr |  |-  ( ( x e. B /\ y = x ) -> y = x ) | 
						
							| 19 | 14 17 18 | jca31 |  |-  ( ( x e. B /\ y = x ) -> ( ( x e. B /\ y e. B ) /\ y = x ) ) | 
						
							| 20 |  | simpl |  |-  ( ( x e. B /\ y e. B ) -> x e. B ) | 
						
							| 21 | 20 | anim1i |  |-  ( ( ( x e. B /\ y e. B ) /\ y = x ) -> ( x e. B /\ y = x ) ) | 
						
							| 22 | 21 | a1i |  |-  ( G e. Grp -> ( ( ( x e. B /\ y e. B ) /\ y = x ) -> ( x e. B /\ y = x ) ) ) | 
						
							| 23 | 19 22 | impbid2 |  |-  ( G e. Grp -> ( ( x e. B /\ y = x ) <-> ( ( x e. B /\ y e. B ) /\ y = x ) ) ) | 
						
							| 24 |  | simpl |  |-  ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> G e. Grp ) | 
						
							| 25 |  | simpr |  |-  ( ( x e. B /\ y e. B ) -> y e. B ) | 
						
							| 26 | 25 | adantl |  |-  ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> y e. B ) | 
						
							| 27 | 20 | adantl |  |-  ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> x e. B ) | 
						
							| 28 | 3 9 24 26 27 | grpinv11 |  |-  ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> ( ( ( invg ` G ) ` y ) = ( ( invg ` G ) ` x ) <-> y = x ) ) | 
						
							| 29 | 3 9 | grpinvcl |  |-  ( ( G e. Grp /\ x e. B ) -> ( ( invg ` G ) ` x ) e. B ) | 
						
							| 30 | 29 | adantrr |  |-  ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> ( ( invg ` G ) ` x ) e. B ) | 
						
							| 31 | 3 10 1 9 | grpinvid2 |  |-  ( ( G e. Grp /\ y e. B /\ ( ( invg ` G ) ` x ) e. B ) -> ( ( ( invg ` G ) ` y ) = ( ( invg ` G ) ` x ) <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. ) ) | 
						
							| 32 | 24 26 30 31 | syl3anc |  |-  ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> ( ( ( invg ` G ) ` y ) = ( ( invg ` G ) ` x ) <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. ) ) | 
						
							| 33 | 28 32 | bitr3d |  |-  ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> ( y = x <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. ) ) | 
						
							| 34 | 33 | pm5.32da |  |-  ( G e. Grp -> ( ( ( x e. B /\ y e. B ) /\ y = x ) <-> ( ( x e. B /\ y e. B ) /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. ) ) ) | 
						
							| 35 |  | vex |  |-  x e. _V | 
						
							| 36 |  | vex |  |-  y e. _V | 
						
							| 37 | 35 36 | prss |  |-  ( ( x e. B /\ y e. B ) <-> { x , y } C_ B ) | 
						
							| 38 | 37 | a1i |  |-  ( G e. Grp -> ( ( x e. B /\ y e. B ) <-> { x , y } C_ B ) ) | 
						
							| 39 | 2 | eleq2i |  |-  ( ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. { .0. } ) | 
						
							| 40 |  | ovex |  |-  ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. _V | 
						
							| 41 | 40 | elsn |  |-  ( ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. { .0. } <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. ) | 
						
							| 42 | 39 41 | bitr2i |  |-  ( ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) | 
						
							| 43 | 42 | a1i |  |-  ( G e. Grp -> ( ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) ) | 
						
							| 44 | 38 43 | anbi12d |  |-  ( G e. Grp -> ( ( ( x e. B /\ y e. B ) /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. ) <-> ( { x , y } C_ B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) ) ) | 
						
							| 45 | 23 34 44 | 3bitrd |  |-  ( G e. Grp -> ( ( x e. B /\ y = x ) <-> ( { x , y } C_ B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) ) ) | 
						
							| 46 | 45 | opabbidv |  |-  ( G e. Grp -> { <. x , y >. | ( x e. B /\ y = x ) } = { <. x , y >. | ( { x , y } C_ B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) } ) | 
						
							| 47 | 13 46 | eqtr2id |  |-  ( G e. Grp -> { <. x , y >. | ( { x , y } C_ B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) } = ( _I |` B ) ) | 
						
							| 48 | 12 47 | eqtrd |  |-  ( G e. Grp -> R = ( _I |` B ) ) |