| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqg0subg.0 |  |-  .0. = ( 0g ` G ) | 
						
							| 2 |  | eqg0subg.s |  |-  S = { .0. } | 
						
							| 3 |  | eqg0subg.b |  |-  B = ( Base ` G ) | 
						
							| 4 |  | eqg0subg.r |  |-  R = ( G ~QG S ) | 
						
							| 5 |  | df-ec |  |-  [ X ] R = ( R " { X } ) | 
						
							| 6 | 1 2 3 4 | eqg0subg |  |-  ( G e. Grp -> R = ( _I |` B ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( G e. Grp /\ X e. B ) -> R = ( _I |` B ) ) | 
						
							| 8 | 7 | imaeq1d |  |-  ( ( G e. Grp /\ X e. B ) -> ( R " { X } ) = ( ( _I |` B ) " { X } ) ) | 
						
							| 9 |  | snssi |  |-  ( X e. B -> { X } C_ B ) | 
						
							| 10 | 9 | adantl |  |-  ( ( G e. Grp /\ X e. B ) -> { X } C_ B ) | 
						
							| 11 |  | resima2 |  |-  ( { X } C_ B -> ( ( _I |` B ) " { X } ) = ( _I " { X } ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( G e. Grp /\ X e. B ) -> ( ( _I |` B ) " { X } ) = ( _I " { X } ) ) | 
						
							| 13 |  | imai |  |-  ( _I " { X } ) = { X } | 
						
							| 14 | 12 13 | eqtrdi |  |-  ( ( G e. Grp /\ X e. B ) -> ( ( _I |` B ) " { X } ) = { X } ) | 
						
							| 15 | 8 14 | eqtrd |  |-  ( ( G e. Grp /\ X e. B ) -> ( R " { X } ) = { X } ) | 
						
							| 16 | 5 15 | eqtrid |  |-  ( ( G e. Grp /\ X e. B ) -> [ X ] R = { X } ) |