Step |
Hyp |
Ref |
Expression |
1 |
|
eqg0subg.0 |
|- .0. = ( 0g ` G ) |
2 |
|
eqg0subg.s |
|- S = { .0. } |
3 |
|
eqg0subg.b |
|- B = ( Base ` G ) |
4 |
|
eqg0subg.r |
|- R = ( G ~QG S ) |
5 |
|
df-ec |
|- [ X ] R = ( R " { X } ) |
6 |
1 2 3 4
|
eqg0subg |
|- ( G e. Grp -> R = ( _I |` B ) ) |
7 |
6
|
adantr |
|- ( ( G e. Grp /\ X e. B ) -> R = ( _I |` B ) ) |
8 |
7
|
imaeq1d |
|- ( ( G e. Grp /\ X e. B ) -> ( R " { X } ) = ( ( _I |` B ) " { X } ) ) |
9 |
|
snssi |
|- ( X e. B -> { X } C_ B ) |
10 |
9
|
adantl |
|- ( ( G e. Grp /\ X e. B ) -> { X } C_ B ) |
11 |
|
resima2 |
|- ( { X } C_ B -> ( ( _I |` B ) " { X } ) = ( _I " { X } ) ) |
12 |
10 11
|
syl |
|- ( ( G e. Grp /\ X e. B ) -> ( ( _I |` B ) " { X } ) = ( _I " { X } ) ) |
13 |
|
imai |
|- ( _I " { X } ) = { X } |
14 |
12 13
|
eqtrdi |
|- ( ( G e. Grp /\ X e. B ) -> ( ( _I |` B ) " { X } ) = { X } ) |
15 |
8 14
|
eqtrd |
|- ( ( G e. Grp /\ X e. B ) -> ( R " { X } ) = { X } ) |
16 |
5 15
|
eqtrid |
|- ( ( G e. Grp /\ X e. B ) -> [ X ] R = { X } ) |