| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqger.x |
|- X = ( Base ` G ) |
| 2 |
|
eqger.r |
|- .~ = ( G ~QG Y ) |
| 3 |
|
eqgid.3 |
|- .0. = ( 0g ` G ) |
| 4 |
2
|
releqg |
|- Rel .~ |
| 5 |
|
relelec |
|- ( Rel .~ -> ( x e. [ .0. ] .~ <-> .0. .~ x ) ) |
| 6 |
4 5
|
ax-mp |
|- ( x e. [ .0. ] .~ <-> .0. .~ x ) |
| 7 |
|
subgrcl |
|- ( Y e. ( SubGrp ` G ) -> G e. Grp ) |
| 8 |
7
|
adantr |
|- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> G e. Grp ) |
| 9 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 10 |
3 9
|
grpinvid |
|- ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 11 |
8 10
|
syl |
|- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 12 |
11
|
oveq1d |
|- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) = ( .0. ( +g ` G ) x ) ) |
| 13 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 14 |
1 13 3
|
grplid |
|- ( ( G e. Grp /\ x e. X ) -> ( .0. ( +g ` G ) x ) = x ) |
| 15 |
7 14
|
sylan |
|- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( .0. ( +g ` G ) x ) = x ) |
| 16 |
12 15
|
eqtrd |
|- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) = x ) |
| 17 |
16
|
eleq1d |
|- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y <-> x e. Y ) ) |
| 18 |
17
|
pm5.32da |
|- ( Y e. ( SubGrp ` G ) -> ( ( x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) <-> ( x e. X /\ x e. Y ) ) ) |
| 19 |
1
|
subgss |
|- ( Y e. ( SubGrp ` G ) -> Y C_ X ) |
| 20 |
1 3
|
grpidcl |
|- ( G e. Grp -> .0. e. X ) |
| 21 |
7 20
|
syl |
|- ( Y e. ( SubGrp ` G ) -> .0. e. X ) |
| 22 |
1 9 13 2
|
eqgval |
|- ( ( G e. Grp /\ Y C_ X ) -> ( .0. .~ x <-> ( .0. e. X /\ x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) ) ) |
| 23 |
|
3anass |
|- ( ( .0. e. X /\ x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) <-> ( .0. e. X /\ ( x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) ) ) |
| 24 |
22 23
|
bitrdi |
|- ( ( G e. Grp /\ Y C_ X ) -> ( .0. .~ x <-> ( .0. e. X /\ ( x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) ) ) ) |
| 25 |
24
|
baibd |
|- ( ( ( G e. Grp /\ Y C_ X ) /\ .0. e. X ) -> ( .0. .~ x <-> ( x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) ) ) |
| 26 |
7 19 21 25
|
syl21anc |
|- ( Y e. ( SubGrp ` G ) -> ( .0. .~ x <-> ( x e. X /\ ( ( ( invg ` G ) ` .0. ) ( +g ` G ) x ) e. Y ) ) ) |
| 27 |
19
|
sseld |
|- ( Y e. ( SubGrp ` G ) -> ( x e. Y -> x e. X ) ) |
| 28 |
27
|
pm4.71rd |
|- ( Y e. ( SubGrp ` G ) -> ( x e. Y <-> ( x e. X /\ x e. Y ) ) ) |
| 29 |
18 26 28
|
3bitr4d |
|- ( Y e. ( SubGrp ` G ) -> ( .0. .~ x <-> x e. Y ) ) |
| 30 |
6 29
|
bitrid |
|- ( Y e. ( SubGrp ` G ) -> ( x e. [ .0. ] .~ <-> x e. Y ) ) |
| 31 |
30
|
eqrdv |
|- ( Y e. ( SubGrp ` G ) -> [ .0. ] .~ = Y ) |