Description: Expansion of an equality with a conditional operator. (Contributed by NM, 14-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqif | |- ( A = if ( ph , B , C ) <-> ( ( ph /\ A = B ) \/ ( -. ph /\ A = C ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeq2 | |- ( if ( ph , B , C ) = B -> ( A = if ( ph , B , C ) <-> A = B ) ) | |
| 2 | eqeq2 | |- ( if ( ph , B , C ) = C -> ( A = if ( ph , B , C ) <-> A = C ) ) | |
| 3 | 1 2 | elimif | |- ( A = if ( ph , B , C ) <-> ( ( ph /\ A = B ) \/ ( -. ph /\ A = C ) ) ) |