Metamath Proof Explorer


Theorem eqif

Description: Expansion of an equality with a conditional operator. (Contributed by NM, 14-Feb-2005)

Ref Expression
Assertion eqif
|- ( A = if ( ph , B , C ) <-> ( ( ph /\ A = B ) \/ ( -. ph /\ A = C ) ) )

Proof

Step Hyp Ref Expression
1 eqeq2
 |-  ( if ( ph , B , C ) = B -> ( A = if ( ph , B , C ) <-> A = B ) )
2 eqeq2
 |-  ( if ( ph , B , C ) = C -> ( A = if ( ph , B , C ) <-> A = C ) )
3 1 2 elimif
 |-  ( A = if ( ph , B , C ) <-> ( ( ph /\ A = B ) \/ ( -. ph /\ A = C ) ) )