Description: Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqle | |- ( ( A e. RR /\ A = B ) -> A <_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leid | |- ( A e. RR -> A <_ A ) |
|
| 2 | breq2 | |- ( A = B -> ( A <_ A <-> A <_ B ) ) |
|
| 3 | 2 | biimpac | |- ( ( A <_ A /\ A = B ) -> A <_ B ) |
| 4 | 1 3 | sylan | |- ( ( A e. RR /\ A = B ) -> A <_ B ) |