Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqled.1 | |- ( ph -> A e. RR ) |
|
eqled.2 | |- ( ph -> A = B ) |
||
Assertion | eqled | |- ( ph -> A <_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqled.1 | |- ( ph -> A e. RR ) |
|
2 | eqled.2 | |- ( ph -> A = B ) |
|
3 | eqle | |- ( ( A e. RR /\ A = B ) -> A <_ B ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> A <_ B ) |