Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqled.1 | |- ( ph -> A e. RR ) |
|
| eqled.2 | |- ( ph -> A = B ) |
||
| Assertion | eqled | |- ( ph -> A <_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqled.1 | |- ( ph -> A e. RR ) |
|
| 2 | eqled.2 | |- ( ph -> A = B ) |
|
| 3 | eqle | |- ( ( A e. RR /\ A = B ) -> A <_ B ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> A <_ B ) |