Metamath Proof Explorer


Theorem eqled

Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses eqled.1
|- ( ph -> A e. RR )
eqled.2
|- ( ph -> A = B )
Assertion eqled
|- ( ph -> A <_ B )

Proof

Step Hyp Ref Expression
1 eqled.1
 |-  ( ph -> A e. RR )
2 eqled.2
 |-  ( ph -> A = B )
3 eqle
 |-  ( ( A e. RR /\ A = B ) -> A <_ B )
4 1 2 3 syl2anc
 |-  ( ph -> A <_ B )