Metamath Proof Explorer


Theorem eqlei

Description: Equality implies 'less than or equal to'. (Contributed by NM, 23-May-1999) (Revised by Alexander van der Vekens, 20-Mar-2018)

Ref Expression
Hypothesis lt.1
|- A e. RR
Assertion eqlei
|- ( A = B -> A <_ B )

Proof

Step Hyp Ref Expression
1 lt.1
 |-  A e. RR
2 eleq1a
 |-  ( A e. RR -> ( B = A -> B e. RR ) )
3 1 2 ax-mp
 |-  ( B = A -> B e. RR )
4 3 eqcoms
 |-  ( A = B -> B e. RR )
5 letri3
 |-  ( ( A e. RR /\ B e. RR ) -> ( A = B <-> ( A <_ B /\ B <_ A ) ) )
6 1 5 mpan
 |-  ( B e. RR -> ( A = B <-> ( A <_ B /\ B <_ A ) ) )
7 simpl
 |-  ( ( A <_ B /\ B <_ A ) -> A <_ B )
8 6 7 syl6bi
 |-  ( B e. RR -> ( A = B -> A <_ B ) )
9 4 8 mpcom
 |-  ( A = B -> A <_ B )