Description: Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltd.1 | |- ( ph -> A e. RR ) |
|
ltd.2 | |- ( ph -> B e. RR ) |
||
Assertion | eqleltd | |- ( ph -> ( A = B <-> ( A <_ B /\ -. A < B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | |- ( ph -> A e. RR ) |
|
2 | ltd.2 | |- ( ph -> B e. RR ) |
|
3 | eqlelt | |- ( ( A e. RR /\ B e. RR ) -> ( A = B <-> ( A <_ B /\ -. A < B ) ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( A = B <-> ( A <_ B /\ -. A < B ) ) ) |