Step |
Hyp |
Ref |
Expression |
1 |
|
eqmat.a |
|- A = ( N Mat R ) |
2 |
|
eqmat.b |
|- B = ( Base ` A ) |
3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
4 |
1 3 2
|
matbas2i |
|- ( X e. B -> X e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
5 |
|
elmapfn |
|- ( X e. ( ( Base ` R ) ^m ( N X. N ) ) -> X Fn ( N X. N ) ) |
6 |
4 5
|
syl |
|- ( X e. B -> X Fn ( N X. N ) ) |
7 |
1 3 2
|
matbas2i |
|- ( Y e. B -> Y e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
8 |
|
elmapfn |
|- ( Y e. ( ( Base ` R ) ^m ( N X. N ) ) -> Y Fn ( N X. N ) ) |
9 |
7 8
|
syl |
|- ( Y e. B -> Y Fn ( N X. N ) ) |
10 |
|
eqfnov2 |
|- ( ( X Fn ( N X. N ) /\ Y Fn ( N X. N ) ) -> ( X = Y <-> A. i e. N A. j e. N ( i X j ) = ( i Y j ) ) ) |
11 |
6 9 10
|
syl2an |
|- ( ( X e. B /\ Y e. B ) -> ( X = Y <-> A. i e. N A. j e. N ( i X j ) = ( i Y j ) ) ) |