| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqmat.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | eqmat.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 4 | 1 3 2 | matbas2i |  |-  ( X e. B -> X e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 5 |  | elmapfn |  |-  ( X e. ( ( Base ` R ) ^m ( N X. N ) ) -> X Fn ( N X. N ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( X e. B -> X Fn ( N X. N ) ) | 
						
							| 7 | 1 3 2 | matbas2i |  |-  ( Y e. B -> Y e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 8 |  | elmapfn |  |-  ( Y e. ( ( Base ` R ) ^m ( N X. N ) ) -> Y Fn ( N X. N ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( Y e. B -> Y Fn ( N X. N ) ) | 
						
							| 10 |  | eqfnov2 |  |-  ( ( X Fn ( N X. N ) /\ Y Fn ( N X. N ) ) -> ( X = Y <-> A. i e. N A. j e. N ( i X j ) = ( i Y j ) ) ) | 
						
							| 11 | 6 9 10 | syl2an |  |-  ( ( X e. B /\ Y e. B ) -> ( X = Y <-> A. i e. N A. j e. N ( i X j ) = ( i Y j ) ) ) |