Description: If a complex number equals its own negative, it is zero. One-way deduction form of eqneg . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqnegad.1 | |- ( ph -> A e. CC ) |
|
| eqnegad.2 | |- ( ph -> A = -u A ) |
||
| Assertion | eqnegad | |- ( ph -> A = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnegad.1 | |- ( ph -> A e. CC ) |
|
| 2 | eqnegad.2 | |- ( ph -> A = -u A ) |
|
| 3 | 1 | eqnegd | |- ( ph -> ( A = -u A <-> A = 0 ) ) |
| 4 | 2 3 | mpbid | |- ( ph -> A = 0 ) |