Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqneltrd.1 | |- ( ph -> A = B ) |
|
| eqneltrd.2 | |- ( ph -> -. B e. C ) |
||
| Assertion | eqneltrd | |- ( ph -> -. A e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqneltrd.1 | |- ( ph -> A = B ) |
|
| 2 | eqneltrd.2 | |- ( ph -> -. B e. C ) |
|
| 3 | 1 | eleq1d | |- ( ph -> ( A e. C <-> B e. C ) ) |
| 4 | 2 3 | mtbird | |- ( ph -> -. A e. C ) |