Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | eqneqall | |- ( A = B -> ( A =/= B -> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne | |- ( A =/= B <-> -. A = B ) |
|
2 | pm2.24 | |- ( A = B -> ( -. A = B -> ph ) ) |
|
3 | 1 2 | syl5bi | |- ( A = B -> ( A =/= B -> ph ) ) |