Description: Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqop2.1 | |- B e. _V | |
| eqop2.2 | |- C e. _V | ||
| Assertion | eqop2 | |- ( A = <. B , C >. <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) = B /\ ( 2nd ` A ) = C ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqop2.1 | |- B e. _V | |
| 2 | eqop2.2 | |- C e. _V | |
| 3 | 1 2 | opelvv | |- <. B , C >. e. ( _V X. _V ) | 
| 4 | eleq1 | |- ( A = <. B , C >. -> ( A e. ( _V X. _V ) <-> <. B , C >. e. ( _V X. _V ) ) ) | |
| 5 | 3 4 | mpbiri | |- ( A = <. B , C >. -> A e. ( _V X. _V ) ) | 
| 6 | eqop | |- ( A e. ( _V X. _V ) -> ( A = <. B , C >. <-> ( ( 1st ` A ) = B /\ ( 2nd ` A ) = C ) ) ) | |
| 7 | 5 6 | biadanii | |- ( A = <. B , C >. <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) = B /\ ( 2nd ` A ) = C ) ) ) |