Metamath Proof Explorer


Theorem eqop2

Description: Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014)

Ref Expression
Hypotheses eqop2.1
|- B e. _V
eqop2.2
|- C e. _V
Assertion eqop2
|- ( A = <. B , C >. <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) = B /\ ( 2nd ` A ) = C ) ) )

Proof

Step Hyp Ref Expression
1 eqop2.1
 |-  B e. _V
2 eqop2.2
 |-  C e. _V
3 1 2 opelvv
 |-  <. B , C >. e. ( _V X. _V )
4 eleq1
 |-  ( A = <. B , C >. -> ( A e. ( _V X. _V ) <-> <. B , C >. e. ( _V X. _V ) ) )
5 3 4 mpbiri
 |-  ( A = <. B , C >. -> A e. ( _V X. _V ) )
6 eqop
 |-  ( A e. ( _V X. _V ) -> ( A = <. B , C >. <-> ( ( 1st ` A ) = B /\ ( 2nd ` A ) = C ) ) )
7 5 6 biadanii
 |-  ( A = <. B , C >. <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) = B /\ ( 2nd ` A ) = C ) ) )