Description: Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqop2.1 | |- B e. _V |
|
eqop2.2 | |- C e. _V |
||
Assertion | eqop2 | |- ( A = <. B , C >. <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) = B /\ ( 2nd ` A ) = C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqop2.1 | |- B e. _V |
|
2 | eqop2.2 | |- C e. _V |
|
3 | 1 2 | opelvv | |- <. B , C >. e. ( _V X. _V ) |
4 | eleq1 | |- ( A = <. B , C >. -> ( A e. ( _V X. _V ) <-> <. B , C >. e. ( _V X. _V ) ) ) |
|
5 | 3 4 | mpbiri | |- ( A = <. B , C >. -> A e. ( _V X. _V ) ) |
6 | eqop | |- ( A e. ( _V X. _V ) -> ( A = <. B , C >. <-> ( ( 1st ` A ) = B /\ ( 2nd ` A ) = C ) ) ) |
|
7 | 5 6 | biadanii | |- ( A = <. B , C >. <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) = B /\ ( 2nd ` A ) = C ) ) ) |