Metamath Proof Explorer


Theorem eqord2

Description: A strictly decreasing real function on a subset of RR is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ltord.1
|- ( x = y -> A = B )
ltord.2
|- ( x = C -> A = M )
ltord.3
|- ( x = D -> A = N )
ltord.4
|- S C_ RR
ltord.5
|- ( ( ph /\ x e. S ) -> A e. RR )
ltord2.6
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x < y -> B < A ) )
Assertion eqord2
|- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C = D <-> M = N ) )

Proof

Step Hyp Ref Expression
1 ltord.1
 |-  ( x = y -> A = B )
2 ltord.2
 |-  ( x = C -> A = M )
3 ltord.3
 |-  ( x = D -> A = N )
4 ltord.4
 |-  S C_ RR
5 ltord.5
 |-  ( ( ph /\ x e. S ) -> A e. RR )
6 ltord2.6
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x < y -> B < A ) )
7 1 negeqd
 |-  ( x = y -> -u A = -u B )
8 2 negeqd
 |-  ( x = C -> -u A = -u M )
9 3 negeqd
 |-  ( x = D -> -u A = -u N )
10 5 renegcld
 |-  ( ( ph /\ x e. S ) -> -u A e. RR )
11 5 ralrimiva
 |-  ( ph -> A. x e. S A e. RR )
12 1 eleq1d
 |-  ( x = y -> ( A e. RR <-> B e. RR ) )
13 12 rspccva
 |-  ( ( A. x e. S A e. RR /\ y e. S ) -> B e. RR )
14 11 13 sylan
 |-  ( ( ph /\ y e. S ) -> B e. RR )
15 14 adantrl
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> B e. RR )
16 5 adantrr
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> A e. RR )
17 ltneg
 |-  ( ( B e. RR /\ A e. RR ) -> ( B < A <-> -u A < -u B ) )
18 15 16 17 syl2anc
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( B < A <-> -u A < -u B ) )
19 6 18 sylibd
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x < y -> -u A < -u B ) )
20 7 8 9 4 10 19 eqord1
 |-  ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C = D <-> -u M = -u N ) )
21 2 eleq1d
 |-  ( x = C -> ( A e. RR <-> M e. RR ) )
22 21 rspccva
 |-  ( ( A. x e. S A e. RR /\ C e. S ) -> M e. RR )
23 11 22 sylan
 |-  ( ( ph /\ C e. S ) -> M e. RR )
24 23 adantrr
 |-  ( ( ph /\ ( C e. S /\ D e. S ) ) -> M e. RR )
25 24 recnd
 |-  ( ( ph /\ ( C e. S /\ D e. S ) ) -> M e. CC )
26 3 eleq1d
 |-  ( x = D -> ( A e. RR <-> N e. RR ) )
27 26 rspccva
 |-  ( ( A. x e. S A e. RR /\ D e. S ) -> N e. RR )
28 11 27 sylan
 |-  ( ( ph /\ D e. S ) -> N e. RR )
29 28 adantrl
 |-  ( ( ph /\ ( C e. S /\ D e. S ) ) -> N e. RR )
30 29 recnd
 |-  ( ( ph /\ ( C e. S /\ D e. S ) ) -> N e. CC )
31 25 30 neg11ad
 |-  ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( -u M = -u N <-> M = N ) )
32 20 31 bitrd
 |-  ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C = D <-> M = N ) )