Step |
Hyp |
Ref |
Expression |
1 |
|
ltord.1 |
|- ( x = y -> A = B ) |
2 |
|
ltord.2 |
|- ( x = C -> A = M ) |
3 |
|
ltord.3 |
|- ( x = D -> A = N ) |
4 |
|
ltord.4 |
|- S C_ RR |
5 |
|
ltord.5 |
|- ( ( ph /\ x e. S ) -> A e. RR ) |
6 |
|
ltord2.6 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x < y -> B < A ) ) |
7 |
1
|
negeqd |
|- ( x = y -> -u A = -u B ) |
8 |
2
|
negeqd |
|- ( x = C -> -u A = -u M ) |
9 |
3
|
negeqd |
|- ( x = D -> -u A = -u N ) |
10 |
5
|
renegcld |
|- ( ( ph /\ x e. S ) -> -u A e. RR ) |
11 |
5
|
ralrimiva |
|- ( ph -> A. x e. S A e. RR ) |
12 |
1
|
eleq1d |
|- ( x = y -> ( A e. RR <-> B e. RR ) ) |
13 |
12
|
rspccva |
|- ( ( A. x e. S A e. RR /\ y e. S ) -> B e. RR ) |
14 |
11 13
|
sylan |
|- ( ( ph /\ y e. S ) -> B e. RR ) |
15 |
14
|
adantrl |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> B e. RR ) |
16 |
5
|
adantrr |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> A e. RR ) |
17 |
|
ltneg |
|- ( ( B e. RR /\ A e. RR ) -> ( B < A <-> -u A < -u B ) ) |
18 |
15 16 17
|
syl2anc |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( B < A <-> -u A < -u B ) ) |
19 |
6 18
|
sylibd |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x < y -> -u A < -u B ) ) |
20 |
7 8 9 4 10 19
|
eqord1 |
|- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C = D <-> -u M = -u N ) ) |
21 |
2
|
eleq1d |
|- ( x = C -> ( A e. RR <-> M e. RR ) ) |
22 |
21
|
rspccva |
|- ( ( A. x e. S A e. RR /\ C e. S ) -> M e. RR ) |
23 |
11 22
|
sylan |
|- ( ( ph /\ C e. S ) -> M e. RR ) |
24 |
23
|
adantrr |
|- ( ( ph /\ ( C e. S /\ D e. S ) ) -> M e. RR ) |
25 |
24
|
recnd |
|- ( ( ph /\ ( C e. S /\ D e. S ) ) -> M e. CC ) |
26 |
3
|
eleq1d |
|- ( x = D -> ( A e. RR <-> N e. RR ) ) |
27 |
26
|
rspccva |
|- ( ( A. x e. S A e. RR /\ D e. S ) -> N e. RR ) |
28 |
11 27
|
sylan |
|- ( ( ph /\ D e. S ) -> N e. RR ) |
29 |
28
|
adantrl |
|- ( ( ph /\ ( C e. S /\ D e. S ) ) -> N e. RR ) |
30 |
29
|
recnd |
|- ( ( ph /\ ( C e. S /\ D e. S ) ) -> N e. CC ) |
31 |
25 30
|
neg11ad |
|- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( -u M = -u N <-> M = N ) ) |
32 |
20 31
|
bitrd |
|- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C = D <-> M = N ) ) |