| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqrdav.1 |
|- ( ( ph /\ x e. A ) -> x e. C ) |
| 2 |
|
eqrdav.2 |
|- ( ( ph /\ x e. B ) -> x e. C ) |
| 3 |
|
eqrdav.3 |
|- ( ( ph /\ x e. C ) -> ( x e. A <-> x e. B ) ) |
| 4 |
3
|
biimpd |
|- ( ( ph /\ x e. C ) -> ( x e. A -> x e. B ) ) |
| 5 |
4
|
impancom |
|- ( ( ph /\ x e. A ) -> ( x e. C -> x e. B ) ) |
| 6 |
1 5
|
mpd |
|- ( ( ph /\ x e. A ) -> x e. B ) |
| 7 |
3
|
biimprd |
|- ( ( ph /\ x e. C ) -> ( x e. B -> x e. A ) ) |
| 8 |
7
|
impancom |
|- ( ( ph /\ x e. B ) -> ( x e. C -> x e. A ) ) |
| 9 |
2 8
|
mpd |
|- ( ( ph /\ x e. B ) -> x e. A ) |
| 10 |
6 9
|
impbida |
|- ( ph -> ( x e. A <-> x e. B ) ) |
| 11 |
10
|
eqrdv |
|- ( ph -> A = B ) |