Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqrdv.1 | |- ( ph -> ( x e. A <-> x e. B ) ) |
|
| Assertion | eqrdv | |- ( ph -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrdv.1 | |- ( ph -> ( x e. A <-> x e. B ) ) |
|
| 2 | 1 | alrimiv | |- ( ph -> A. x ( x e. A <-> x e. B ) ) |
| 3 | dfcleq | |- ( A = B <-> A. x ( x e. A <-> x e. B ) ) |
|
| 4 | 2 3 | sylibr | |- ( ph -> A = B ) |