Description: Deduce equality of relations from equivalence of membership. (Contributed by Rodolfo Medina, 10-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqrelrdv.1 | |- Rel A |
|
| eqrelrdv.2 | |- Rel B |
||
| eqrelrdv.3 | |- ( ph -> ( <. x , y >. e. A <-> <. x , y >. e. B ) ) |
||
| Assertion | eqrelrdv | |- ( ph -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrelrdv.1 | |- Rel A |
|
| 2 | eqrelrdv.2 | |- Rel B |
|
| 3 | eqrelrdv.3 | |- ( ph -> ( <. x , y >. e. A <-> <. x , y >. e. B ) ) |
|
| 4 | 3 | alrimivv | |- ( ph -> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. B ) ) |
| 5 | eqrel | |- ( ( Rel A /\ Rel B ) -> ( A = B <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. B ) ) ) |
|
| 6 | 1 2 5 | mp2an | |- ( A = B <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. B ) ) |
| 7 | 4 6 | sylibr | |- ( ph -> A = B ) |