Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqreliiv.1 | |- Rel A |
|
| eqreliiv.2 | |- Rel B |
||
| eqreliiv.3 | |- ( <. x , y >. e. A <-> <. x , y >. e. B ) |
||
| Assertion | eqrelriiv | |- A = B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqreliiv.1 | |- Rel A |
|
| 2 | eqreliiv.2 | |- Rel B |
|
| 3 | eqreliiv.3 | |- ( <. x , y >. e. A <-> <. x , y >. e. B ) |
|
| 4 | 3 | eqrelriv | |- ( ( Rel A /\ Rel B ) -> A = B ) |
| 5 | 1 2 4 | mp2an | |- A = B |