Metamath Proof Explorer


Theorem eqrelriiv

Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995)

Ref Expression
Hypotheses eqreliiv.1
|- Rel A
eqreliiv.2
|- Rel B
eqreliiv.3
|- ( <. x , y >. e. A <-> <. x , y >. e. B )
Assertion eqrelriiv
|- A = B

Proof

Step Hyp Ref Expression
1 eqreliiv.1
 |-  Rel A
2 eqreliiv.2
 |-  Rel B
3 eqreliiv.3
 |-  ( <. x , y >. e. A <-> <. x , y >. e. B )
4 3 eqrelriv
 |-  ( ( Rel A /\ Rel B ) -> A = B )
5 1 2 4 mp2an
 |-  A = B