Description: Inference from extensionality principle for relations. (Contributed by FL, 15-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqrelriv.1 | |- ( <. x , y >. e. A <-> <. x , y >. e. B ) |
|
| Assertion | eqrelriv | |- ( ( Rel A /\ Rel B ) -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrelriv.1 | |- ( <. x , y >. e. A <-> <. x , y >. e. B ) |
|
| 2 | 1 | gen2 | |- A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. B ) |
| 3 | eqrel | |- ( ( Rel A /\ Rel B ) -> ( A = B <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. B ) ) ) |
|
| 4 | 2 3 | mpbiri | |- ( ( Rel A /\ Rel B ) -> A = B ) |