Description: Inference from extensionality principle for relations. (Contributed by FL, 15-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eqrelriv.1 | |- ( <. x , y >. e. A <-> <. x , y >. e. B ) |
|
Assertion | eqrelriv | |- ( ( Rel A /\ Rel B ) -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrelriv.1 | |- ( <. x , y >. e. A <-> <. x , y >. e. B ) |
|
2 | 1 | gen2 | |- A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. B ) |
3 | eqrel | |- ( ( Rel A /\ Rel B ) -> ( A = B <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. B ) ) ) |
|
4 | 2 3 | mpbiri | |- ( ( Rel A /\ Rel B ) -> A = B ) |