Metamath Proof Explorer


Theorem eqrelriv

Description: Inference from extensionality principle for relations. (Contributed by FL, 15-Oct-2012)

Ref Expression
Hypothesis eqrelriv.1
|- ( <. x , y >. e. A <-> <. x , y >. e. B )
Assertion eqrelriv
|- ( ( Rel A /\ Rel B ) -> A = B )

Proof

Step Hyp Ref Expression
1 eqrelriv.1
 |-  ( <. x , y >. e. A <-> <. x , y >. e. B )
2 1 gen2
 |-  A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. B )
3 eqrel
 |-  ( ( Rel A /\ Rel B ) -> ( A = B <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. B ) ) )
4 2 3 mpbiri
 |-  ( ( Rel A /\ Rel B ) -> A = B )