| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssel |
|- ( A C_ ZZ -> ( -u w e. A -> -u w e. ZZ ) ) |
| 2 |
|
recn |
|- ( w e. RR -> w e. CC ) |
| 3 |
|
negid |
|- ( w e. CC -> ( w + -u w ) = 0 ) |
| 4 |
|
0z |
|- 0 e. ZZ |
| 5 |
3 4
|
eqeltrdi |
|- ( w e. CC -> ( w + -u w ) e. ZZ ) |
| 6 |
5
|
pm4.71i |
|- ( w e. CC <-> ( w e. CC /\ ( w + -u w ) e. ZZ ) ) |
| 7 |
|
zrevaddcl |
|- ( -u w e. ZZ -> ( ( w e. CC /\ ( w + -u w ) e. ZZ ) <-> w e. ZZ ) ) |
| 8 |
6 7
|
bitrid |
|- ( -u w e. ZZ -> ( w e. CC <-> w e. ZZ ) ) |
| 9 |
2 8
|
imbitrid |
|- ( -u w e. ZZ -> ( w e. RR -> w e. ZZ ) ) |
| 10 |
1 9
|
syl6 |
|- ( A C_ ZZ -> ( -u w e. A -> ( w e. RR -> w e. ZZ ) ) ) |
| 11 |
10
|
impcomd |
|- ( A C_ ZZ -> ( ( w e. RR /\ -u w e. A ) -> w e. ZZ ) ) |
| 12 |
|
simpr |
|- ( ( w e. RR /\ -u w e. A ) -> -u w e. A ) |
| 13 |
11 12
|
jca2 |
|- ( A C_ ZZ -> ( ( w e. RR /\ -u w e. A ) -> ( w e. ZZ /\ -u w e. A ) ) ) |
| 14 |
|
zre |
|- ( w e. ZZ -> w e. RR ) |
| 15 |
14
|
anim1i |
|- ( ( w e. ZZ /\ -u w e. A ) -> ( w e. RR /\ -u w e. A ) ) |
| 16 |
13 15
|
impbid1 |
|- ( A C_ ZZ -> ( ( w e. RR /\ -u w e. A ) <-> ( w e. ZZ /\ -u w e. A ) ) ) |
| 17 |
|
negeq |
|- ( z = w -> -u z = -u w ) |
| 18 |
17
|
eleq1d |
|- ( z = w -> ( -u z e. A <-> -u w e. A ) ) |
| 19 |
18
|
elrab |
|- ( w e. { z e. RR | -u z e. A } <-> ( w e. RR /\ -u w e. A ) ) |
| 20 |
18
|
elrab |
|- ( w e. { z e. ZZ | -u z e. A } <-> ( w e. ZZ /\ -u w e. A ) ) |
| 21 |
16 19 20
|
3bitr4g |
|- ( A C_ ZZ -> ( w e. { z e. RR | -u z e. A } <-> w e. { z e. ZZ | -u z e. A } ) ) |
| 22 |
21
|
eqrdv |
|- ( A C_ ZZ -> { z e. RR | -u z e. A } = { z e. ZZ | -u z e. A } ) |