Step |
Hyp |
Ref |
Expression |
1 |
|
ssel |
|- ( A C_ ZZ -> ( -u w e. A -> -u w e. ZZ ) ) |
2 |
|
recn |
|- ( w e. RR -> w e. CC ) |
3 |
|
negid |
|- ( w e. CC -> ( w + -u w ) = 0 ) |
4 |
|
0z |
|- 0 e. ZZ |
5 |
3 4
|
eqeltrdi |
|- ( w e. CC -> ( w + -u w ) e. ZZ ) |
6 |
5
|
pm4.71i |
|- ( w e. CC <-> ( w e. CC /\ ( w + -u w ) e. ZZ ) ) |
7 |
|
zrevaddcl |
|- ( -u w e. ZZ -> ( ( w e. CC /\ ( w + -u w ) e. ZZ ) <-> w e. ZZ ) ) |
8 |
6 7
|
syl5bb |
|- ( -u w e. ZZ -> ( w e. CC <-> w e. ZZ ) ) |
9 |
2 8
|
syl5ib |
|- ( -u w e. ZZ -> ( w e. RR -> w e. ZZ ) ) |
10 |
1 9
|
syl6 |
|- ( A C_ ZZ -> ( -u w e. A -> ( w e. RR -> w e. ZZ ) ) ) |
11 |
10
|
impcomd |
|- ( A C_ ZZ -> ( ( w e. RR /\ -u w e. A ) -> w e. ZZ ) ) |
12 |
|
simpr |
|- ( ( w e. RR /\ -u w e. A ) -> -u w e. A ) |
13 |
11 12
|
jca2 |
|- ( A C_ ZZ -> ( ( w e. RR /\ -u w e. A ) -> ( w e. ZZ /\ -u w e. A ) ) ) |
14 |
|
zre |
|- ( w e. ZZ -> w e. RR ) |
15 |
14
|
anim1i |
|- ( ( w e. ZZ /\ -u w e. A ) -> ( w e. RR /\ -u w e. A ) ) |
16 |
13 15
|
impbid1 |
|- ( A C_ ZZ -> ( ( w e. RR /\ -u w e. A ) <-> ( w e. ZZ /\ -u w e. A ) ) ) |
17 |
|
negeq |
|- ( z = w -> -u z = -u w ) |
18 |
17
|
eleq1d |
|- ( z = w -> ( -u z e. A <-> -u w e. A ) ) |
19 |
18
|
elrab |
|- ( w e. { z e. RR | -u z e. A } <-> ( w e. RR /\ -u w e. A ) ) |
20 |
18
|
elrab |
|- ( w e. { z e. ZZ | -u z e. A } <-> ( w e. ZZ /\ -u w e. A ) ) |
21 |
16 19 20
|
3bitr4g |
|- ( A C_ ZZ -> ( w e. { z e. RR | -u z e. A } <-> w e. { z e. ZZ | -u z e. A } ) ) |
22 |
21
|
eqrdv |
|- ( A C_ ZZ -> { z e. RR | -u z e. A } = { z e. ZZ | -u z e. A } ) |