Description: Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqri.1 | |- F/_ x A |
|
eqri.2 | |- F/_ x B |
||
eqri.3 | |- ( x e. A <-> x e. B ) |
||
Assertion | eqri | |- A = B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqri.1 | |- F/_ x A |
|
2 | eqri.2 | |- F/_ x B |
|
3 | eqri.3 | |- ( x e. A <-> x e. B ) |
|
4 | nftru | |- F/ x T. |
|
5 | 3 | a1i | |- ( T. -> ( x e. A <-> x e. B ) ) |
6 | 4 1 2 5 | eqrd | |- ( T. -> A = B ) |
7 | 6 | mptru | |- A = B |